Skip to main content

How To Share Your PC Screen & Use Any OS On Your Mobile



You Don't need any Mouse or keyboard and use any Operating System

on your mobile or tablet. Here I explain step by step how you can connect your pc with your android mobile or tablets. You do not need use of your mouse or

keyboard any more. Just connect your PC with your mobile and have fun and ditch your mouse.


As technology advances, it will become easier to directly translate our ideas from our mind to the computer. However, approaching a problem hands on will always

provide advantages. Remember to work with all the tools at your disposal – including your own two hands.

Comments

Popular posts from this blog

Clap On Off Switch Circuit Using Arduino

  Arduino Clap LED program #define MicAO 8 int ledPin = 13; int clap = 0; long detection_range_start = 0; long detection_range = 0; boolean status_lights = false; void setup() {   pinMode(MicAO, INPUT);   pinMode(ledPin,OUTPUT);   } void loop() { int status_MicAO = digitalRead(MicAO); if (status_MicAO == 0) { if (clap == 0) { detection_range_start = detection_range = millis(); clap++; } else if (clap > 0 && millis()-detection_range >= 50) { detection_range = millis(); clap++; } } if (millis()-detection_range_start >= 400) { if (clap == 2) { if (!status_lights) { status_lights = true; digitalWrite(ledPin, HIGH); } else if (status_lights) { status_lights = false; digitalWrite(ledPin, LOW); } } clap = 0; } }

Bluetooth Robot Car Using Arduino Project Step By Step

Bluetooth Controlled Robot Car Using Arduino Bluetooth Controlled Robot Car Using Arduino Project using LM298n motor deriver and hc-05 bluetooth module step by step tutorial. Code Download :- Click Here Arduino bluetooth controller app Arduino bluetooth controller App

How To Make Radar With Arduino UNO Using Ultrasonic Sensor

  Creating a radar system with an Arduino UNO and an ultrasonic sensor involves a few straight forward steps. First, you'll need to connect the ultrasonic sensor's trigger pin to one of the Arduino’s digital output pins and the echo pin to a digital input pin. Then, write a simple Arduino sketch to send a pulse from the trigger pin and measure the duration of the pulse received on the echo pin. This duration, proportional to the distance of an object from the sensor, can be calculated using the speed of sound. By continuously taking readings and mapping them to distances, you can plot these measurements to visualize objects in your environment, effectively creating a basic radar system. To display the results, you could use a serial monitor or even integrate an LCD display for real-time feedback. Here is the code below ,- //radar.ino #include <Servo.h>  const int trigPin = 9; const int echoPin = 8; long duration; int distance; Servo myServo;  void setup() {   p...